Surrogate threshold effect: a novel approach for potential approval of new osteoporosis treatments using change in BMD. Study-level analysis from the FNIH Bone Quality Project

- Richard Eastell¹, Eric Vittinghoff², Li-Yung Lui³, Charles E. McCulloch², Fernando Marin⁴, Anne de Papp⁵, Arkadi Chines⁶, Sundeep Khosla⁷, Jane A. Cauley⁸, Douglas C. Bauer², Mary Bouxsein⁹, Dennis M. Black²

For the FNIH Bone Quality Project

¹ University of Sheffield, ² University of California, San Francisco, ³ California Pacific Medical Center, ⁴ Eli Lilly and Co., ⁵ Merck & Co., Inc., Kenilworth, NJ USA, ⁶ Amgen Inc., Thousand Oaks, CA, ⁷ Mayo Clinic Center for Clinical and Translational Science, ⁸ Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, ⁹ Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School.
Disclosures

• Consultancy funding from IDS, Roche Diagnostics, GSK Nutrition, Mereo, Lilly, Sandoz, Nittobo, Abbvie, Samsung, Haoma Medica, CL Bio, and Viking

• Grant funding from Nittobo, IDS, Roche, Amgen and Alexion
Background

• Change in dual-energy X-ray absorptiometry (DXA) bone mineral density (BMD)
 o May be a useful surrogate for fracture endpoints
 o Could enable much smaller and shorter clinical trials for new drug approvals in osteoporosis
• The difference in the change in total hip BMD between active and placebo groups is strongly related to fracture risk reduction with osteoporosis treatments (1)
• What BMD increase would predict a fracture benefit?
 o Such knowledge could allow us to develop a new regulatory pathway for approval of new osteoporosis treatments

Change in BMD is related to vertebral fracture risk reduction

Total Hip BMD

\[r^2 = 0.56, p = 0.0002 \]

Femoral Neck BMD

\[r^2 = 0.54, p < 0.0001 \]

Lumbar Spine BMD

\[r^2 = 0.63, p < 0.0001 \]
Surrogate Threshold Effect (STE)

- The level of the marker that would predict an improvement in a disease outcome with 95% certainty
- Example: systolic blood pressure change and stroke risk on treatment

Population

• Data from study participants
 o collected as part of the FNIH Bone Quality project
 o a public-private partnership, which compiled IPD from over 150,000 participants in all major clinical trials of osteoporosis therapies, including DXA BMD and fracture outcomes

• The current analyses reflect data from 61,415 study participants with 2-year BMD from 16 osteoporosis trials
 o 9 bisphosphonate; 4 SERM; 1 teriparatide; 1 denosumab; 1 odanacatib
Methods

• Meta-regression using
 o baseline and follow-up BMD results
 o incident fractures from each study
• Assessment of the relationship between
 o the treatment-related difference in total hip BMD changes (percent difference, active minus placebo at 24 months)
 o to the observed fracture risk reduction in each study
• We fit a linear regression to the logarithm of the relative risks and estimated the 95% confidence interval and prediction limits
• The surrogate threshold was defined as the point where the prediction limits crossed the relative risk of fracture of unity
Total Hip BMD difference and fracture reduction - 1

- Arrow indicates the minimum BMD difference predicting significant fracture reduction in a future trial
Total Hip BMD difference and fracture reduction - 2

- Arrow indicates the minimum BMD difference predicting significant fracture reduction in a future trial.
Total Hip BMD difference and fracture reduction - 3

- Arrow indicates the minimum BMD difference predicting significant fracture reduction in a future trial
- Application of thresholds to completed clinical trials

Trials sorted by 2-year difference in THBMD.

Fracture reduction ns, not significant N/A, not available
* p<0.05, ** p<0.01

<table>
<thead>
<tr>
<th>Study name</th>
<th>Study drug</th>
<th>THBMD</th>
<th>VFx</th>
<th>Hip Fx</th>
<th>NV Fx</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZA PHASE 3</td>
<td>Bazedoxifene</td>
<td>1.3</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>MORE</td>
<td>Raloxifene</td>
<td>2.0</td>
<td>**</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>VERT-NORTH AMERICA</td>
<td>Risedronate</td>
<td>2.2</td>
<td>*</td>
<td>ns</td>
<td>*</td>
</tr>
<tr>
<td>GENERATIONS</td>
<td>Arzoxifene</td>
<td>2.3</td>
<td>**</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>IBAN IV</td>
<td>Ibandronate (i.v.)</td>
<td>2.4</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>MEN’S STUDY</td>
<td>Alendronate</td>
<td>2.5</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>PEARL</td>
<td>Lasofoxifene</td>
<td>2.8</td>
<td>**</td>
<td>ns</td>
<td>*</td>
</tr>
<tr>
<td>BONE</td>
<td>Ibandronate (oral)</td>
<td>3.0</td>
<td>**</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>FIT CLINICAL FRACTURE</td>
<td>Alendronate</td>
<td>3.1</td>
<td>**</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>FIT VERTEBRAL FRACTURE</td>
<td>Alendronate</td>
<td>3.7</td>
<td>**</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>LOFT</td>
<td>Odanacatib</td>
<td>4.6</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>ALN PHASE 3</td>
<td>Alendronate</td>
<td>4.6</td>
<td>N/A</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>HORIZON 2301</td>
<td>Zoledronic acid (i.v.)</td>
<td>4.6</td>
<td>N/A</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>FRX PREVENTION TRIAL</td>
<td>PTH(1-34) (SQ)</td>
<td>5.3</td>
<td>**</td>
<td>ns</td>
<td>*</td>
</tr>
<tr>
<td>FREEDOM</td>
<td>Denosumab (SQ)</td>
<td>5.4</td>
<td>**</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>HORIZON 2310</td>
<td>Zoledronic acid (i.v.)</td>
<td>5.4</td>
<td>N/A</td>
<td>ns</td>
<td>*</td>
</tr>
</tbody>
</table>

VFx, 1.7%
Non-VFx, 3.2%
Hip Fx, 4.6%
Strengths and Limitations

• **Strengths**
 - Application of approach used for other surrogate endpoints
 - Large study
 - Access to individual patient data allows study of 2-year BMD and consistent fracture definition

• **Weaknesses**
 - The approach depends on the power of the underlying studies

• **Further analyses**
 - Use of clinically meaningful reduction (e.g. 20%)
 - Use of different time windows, different levels of confidence
Conclusions

• Conclusions
 o This analysis identifies the BMD increases that would predict a fracture benefit

• Discussion
 o The results may be helpful to regulatory agencies if they adopt total hip BMD as a surrogate for fracture risk reduction in clinical trials of new osteoporosis drugs
 o Why are the BMD increases not the same for all fracture types?
 ➢ The drugs may work preferentially on the trabecular bone of the spine
Acknowledgements: Foundation for NIH and Project Team

FNIH Project Team Members (Government):
Gayle Lester – NIAMS (Chair); Sundeep Khosla – Mayo Clinic, Jane Cauley – University of Pittsburgh, Douglas Fester – ASMBR; Theresa Kehoe, Bruce Schneider – FDA; Lyndon Joseph - NIH

FNIH PT Members/Funders (Corporate):
Peter Traianou– AgNovos Healthcare; Arkadi Chines – Amgen Inc.; Chie Fukudu– Daiichi Sankyo, Inc.; Michelle Slimko– Dairy Research Institute®; Fernando Marin– Eli Lilly and Company; Anne de Papp – Merck Sharp & Dohme Corp.; Jim Harris– Roche Diagnostics Corporation

Contributed data sets
Actavis; Amgen Inc.; Eli Lilly and Company; Merck Sharp & Dohme Corp.; NIAMS; NHLBI; Novartis; NPS/Shire; Pfizer Inc.; Roche/Genentech, Radius; Schering Oy; Sermonix

UCSF & FNIH colleagues
Lucy Wu, Helen Heymann, Tania Kamphaus
Reserve Slide: Total Hip, Femoral Neck, Lumbar Spine BMD difference and fracture reduction

<table>
<thead>
<tr>
<th>Fracture type</th>
<th>Total Hip</th>
<th>Femoral Neck</th>
<th>Lumbar Spine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertebral</td>
<td>1.72</td>
<td>1.93</td>
<td>2.62</td>
</tr>
<tr>
<td>Hip</td>
<td>4.57</td>
<td>3.79</td>
<td>6.20</td>
</tr>
<tr>
<td>Non-vertebral</td>
<td>3.23</td>
<td>2.95</td>
<td>4.94</td>
</tr>
</tbody>
</table>